



## Case study - e-Navigation trials on APPS project







## APPS (Advancing Plug & Play Smart Surveillance) Project



- Eureka R&D project
  - From Jan 2015 to Dec 2017
  - 15 partners from Netherlands, Turkey, Spain, Republic of Korea
  - 2 end users (Port of Rotterdam, Republic of Turkey Ministry of Transport, Maritime Affairs and Communication)



## APPS(Advancing Plug & Play Smart Surveillance) Project



#### • Purpose

- Enable the development of plug & play solutions
- Enhance sensors-processing and intelligent decision-making capabilities and intelligent operator-aids of such systems to achieve **smart surveillance**
- Developing acoustic and physico-chemical sensors, LTA(Lighter Than Air) and stationary wing UAV(Unmanned Aerial vehicle)





#### APPS System concept Collection IoT Sensor Platform Best Safety Route Marine Safety Information Long-time & Wide Coverage Alerts **UAV Terminal** EO, IR, thermal, AIS, RADAR **Bio-Sensor** Image, Video Ship Target Ship Image, .. Presentation Plug & Play Platform AIS, UHF, IoT Ship Sensor Data / Image 3G, LTE Position Processing Engine Rules & Weather Human Detection, Ship Classify Knowledge Fire Data Fusion Behavior ship position analysis IoT Security /Safety Info Sensor M/W Command & Cc Analysis **Smart Device** Plug & Play Surveillance Under-water Marine Safety Information network Integration **MSI Service** Water Flow AcousticDirection System



Case #1. How to collect sensor data on board

#### Data collection from sensors on board



#### Background

- There is various accident risk in maritime, such as collision, grounding, sinking, fire/explosion and engine damage
- There are several devices and sensors that are installed on vessels in compliance with international regulations.
- Sensor data on board is key parameters for behavior analysis to predict maritime accident and to detect abnormal behavior.

| Sensor data on board |                                           |          | Services                        |
|----------------------|-------------------------------------------|----------|---------------------------------|
| AIS                  | Position, Type, Speed, Direction          | <b>*</b> | Vessel monitoring               |
| UHF                  | Navigational information for small vessel |          | Collision prediction            |
| <u> </u>             |                                           |          | Recommend safety route          |
| Gyro                 | Heading, Rate of turn                     |          | Small vessel monitoring         |
| Wind                 | Wind speed, Wind direction                |          | Marine weather                  |
| 6 axis               | Acceleration, Roll, Pitch, Yaw            |          | Detection of sinking, grounding |
| Fire                 | Smoke, Temperature, Flare                 |          | Detection of drift              |
| Engine               | Temperature & Pressure of engine          |          | Detection of Fire / Explosion   |
| Sonar                | Depth of water                            |          | Detection of Engine Damage      |
| ENC                  | Hydrographic data                         |          |                                 |

#### Requirements for Sensor interface device



- To interface with legacy sensors on board
  - Need to apply international standard (IEC61162-1,2,3,450, SensorML...)
- Algorithm to select optimal maritime communication autonomously
  - Considering type, priority, transmission interval of collected data and cost and data rate of available network
- Data exchange between ship and shore side system
  - Using proper interface with open API (IoT platform, Maritime Cloud...)



#### Case #1. How to collect sensor data on board

## System configuration





#### Case #1. How to collect sensor data on board

## Prototype of sensor Interface device



- We implemented the prototype of hardware to interface with some of the sensors on board.
- This year, we are going to implement the plug & play function and other remaining algorithm based on this prototype.





### Background



- Detection relies on radar & AIS signals (which non-cooperative vessels do not send).
- Existing surveillance systems based on radar only are not always able to recognize not reported threats and issues, such as non-cooperative vessels, carrying illegal immigrants.
- We are going to use multiple sensors to detect and classify the vessels.
  - IR(Infrared Ray) cameras, PTZ(Pan Tilt Zoom) cameras
  - Acoustic sensors
- Unmanned Aerial Vehicles (UAV)
  - Lighter-Than-Air
  - Fixed-wing UAV









## 1st demonstration in port of Rotterdam



- The 1st demonstration in port of Rotterdam (17th Dec. 2015)
- Purpose of demonstration
  - To detect vessels using visual sensors
  - To integrate by DDS(Data Distribution Service) system
  - To portray detected targets and analyze for collision prediction based on ENC
- Installed cameras
  - 2x fixed thermal cameras
  - 1x Pan-Tilt-Zoom (PTZ) cameras
  - Extensions for 5x additional cameras





## 1st demonstration in port of Rotterdam



- Data integration using DDS(Data Distribution Service)
- Data of detected target: ID, position, SOG, COG, size of ship...



#### 1<sup>st</sup> demonstration in port of Rotterdam



- Integrated detected target using DDS
- Displayed target based on ENC (red symbol: detected by sensor)
- Collision prediction demonstrated using AIS and detected target data



Case #3. How to improve software quality

#### Case #3. How to improve software quality

## How to improve software quality



#### Background

- The guideline on "Software Quality Assurance and Human-Centered Design for e-Navigation "was adopted by IMO
- In order to assure the software quality, it is necessary to follow a defined procedure throughout the entire software development period.
- The utilization of tools to support this can become one of important factors to improve productivity of software development and to keep the software quality consistently.

#### Case #3. How to improve software quality

## Adopted CI(Continuous Integration) tool



- Adopted CI(Continuous Integration) tool to keep software quality consistently
- Automated the process which compiles tests verifies deploys source codes
- Four steps to apply CI tool





SoftwareManager

FinalBuilder

## Improvement of



- Managing the status of progress visually
- Communicating between stakeholders using templates and documents
- Tracing the history of change of every requirements
- Reducing cost and time to integrate and build source codes
- Understanding the necessity of quality management





## Conclusion



- Introduced e-Navigation experience in EUREKA-supported APPS project
- Conducted 3 case studies focusing on e-Navigation.
- This result can be connected to the existing test-beds with proper interfaces in the future.



## aselsan



















# Port of Rotterdam Thank you



















**Kilyong Kim** GMT Co., Ltd. yonjjang@gmtc.kr

Seojeong Lee

Korea Maritime and Ocean University silee@kmou.ac.kr